http://crypto.fmf.ktu.lt/telekonf/archyvas/inf3047%20Kript.Duom.Sauga/

Asymmetric Cryptography --> Public Key Cryptosystems - PKC

Public Parameters for **PKC** are PP = (p, g).

Every person has dedicated to him private key PrK and public key PuK e.g.

 $PrK_A = x$ and $PuK_A = a$ for Alice.

 $PrK_B=y$ and $PuK_B=b$ for Bob.

Private keys must be keeped secret but in contrary public keys are distributed among all users of PKC.

Symmetric Cryptography

There is no any PP except the methods of encryption, e.g. AES-128 or H-functions.

There are only symmetric keys shared between the parties.

In contrary to **PKC** parties are sharing the same secret key k in Symmetric Cryptography.

encrypted with the same relatively short key of length 128 bits, 192 bits, 256 bits or the similar length

Cipher Block Chaining (CBC) mode encryption

 A <u>stream cipher</u> is one that encrypts a digital data stream one bit or one byte at a time.
 Examples of classical stream ciphers are the auto keyed Vigenère cipher and the Vernam cipher.

Diffie-Hellman Key Agreement Protocol - KAP Public Pourameters = (P, g) = PP

P = 11: defines the set of integers $\mathcal{I}_{p}^{*} = \{1, 2, 3, \dots, p-1\}$ $\mathcal{L}_{p}^{*}=\{1,2,3,...,10\}$ with defined operations mod 11.

Let us fix p-as a prime, then any integer z could be

expressed in the form

 $z = t \cdot p + w$ Let p=11 and $z=37 \Rightarrow z=3.11+4$ $37 \mod 11 = 4$

z mod P= P

 $\mathcal{I}_{M}^{*} = \{1, 2, 3, ..., 10\}$ * mod M: it is a group of integers mod P.

Multiplication Tab.		Z11*								
*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

2.6 mod11 = 12 mod11=1

Power Tab.		Z11*									
٨	0	1	2	3	4	5	6	7	8	9	10
(1) 1	1	1	1	1	1	/1	1	1	1	1
2	1	2	4	8	5	(10	9 (7	3	6	1
3) 1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1

 2^{5} mod $11 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ mod 11 = 32 mod 11 = 10

gen. 1

 $\Gamma = \{2, 6, 7, 8\}$ gen.2 gen.3 $|Z_{11}^{*}| = 10$ aen. 4

7	1	7	5	2	3	10	4	6	9	8	1	gen.3	$ \mathcal{I}_{u}^{*} = 10$
8	1	8	9	6	4	10	3	2	5	7	1	gen.4	1 - 4
9) 1	9	4	3	5	1	9	4	3	5	1		$ \mathcal{L}_{M}^{*} = 10$ $ \Gamma = 4$
10	1	10		10			1			10			

The probability (chance) to find a generator in In (or in Ip) is approximately the following

Prob(q is a generator in
$$\mathcal{L}_{p}^{*}$$
) $\approx \frac{4}{10} = \frac{2}{5}$
 $q = randi$; $q \in \{2, 3, 4...\}$

$$PP = (P, g)$$

For the semity reason
$$p \approx 2^{2048}$$
; $|p| \sim 2048$ bits.
 $1 \times \rightarrow 2^{10} = 1024 > 10^3 = 1000$
 $1 \times \rightarrow 2^{20} = --- > 10^6$
 $1 \times \rightarrow 2^{30} = --- > 10^9$
 $1 \times \rightarrow 2^{40} = --- > 10^{12}$
 $1 \times \rightarrow 2^{40} = --- > 10^{12}$
 $1 \times \rightarrow 2^{40} = --- > 10^{12}$; • mod p

C.5.3 Finding generators.

We have to look inside Z_P^* and find a generator. How?

Even if we have a candidate, how do we test it?

The condition is that g is a generator would take $|Z_P^*|$ steps to check: $p^2^{2048} --> |Z_P^*|^2^{2048} -1$. In fact, finding a generator given p is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.

If p is prime and p=2q+1 with q prime then p is a **strong prime**. Ex, $p=11=2\cdot 5+1$ Note that the order of the group Z_P^* is p-1=2q, i.e. $|Z_P^*|=2q$. Q=(p-1)/2Fact C.23. Say p=2q+1 is prime where q is prime, then q in q is a generator of q in q in

Testing whether g is a generator is easy given strong prime p.

Now, given p=2q+1, the generator can be found by randomly generation numbers q < p and verifying Fact C.23. The probability to find a generator is ~0.4.

How to fing more generators when **g** one is found?

Fact C.24. If g is a generator and i is not divisible by q and q then q^i is a generator as well, i.e. If q is a generator and qcd(i,q)=1 and qcd(i,q)=1, then q is a generator as well.

```
>> p=genstrongprime(28)
                                >> 2^28-1
p = 268435019
                                ans = 268435455
>> q=(p-1)/2
                                >> dec2bin(ans)
                                ans = 11111111 1111111111 1111111111
q = 134217509
>> isprime(p)
                                >> dec2hex(268435455)
                                ans = FFFFFFF
ans = 1
                                ans = 1111 1111 1111 1111 1111 1111 1111
>> isprime(q)
ans = 1
>> g=2
g = 2
>> mod_exp(g,q,p)
ans = 268435018
>> mod exp(g,2,p)
ans = 4
```

```
p = 264043379; Check that p is strong prime. p = 268435019; g = 2; Check that g is a generator. g = 2;
```

Public Parameters - PP = (p=268435019, g=2) for Key Agreement Protocol - KAP

secret random number

>>
$$u = randi(p-1)$$
 $A = g^{u} \mod p$

>> $A = mod_{exp}(g, u, p)$
 $A = g^{v} \mod p$
 $A = g^{v} \mod p$

$$k_{AB} = B^{u} \mod p = k = k_{BA} = A^{v} \mod p$$

$$k_{AB} = B^{u} \mod p = (g^{v})^{u} \mod p = g^{vu} \mod p =$$

$$= g^{uv} \mod p = (g^{u})^{v} \mod p = A^{v} \mod p = k_{BA}$$

$$k_{AB} = k_{BA} = k$$